skip to main content


Search for: All records

Creators/Authors contains: "Nelson, James A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Seagrass beds in Florida Bay are home to many ecologically and economically important species. Anthropogenic press perturbation via alterations in hydrology and pulse perturbations such as drought can lead to hypersalinity, hypoxia, and sulfide toxicity, ultimately causing seagrass die-offs. Florida Bay has undergone two large-scale seagrass die-offs, the first in the late 1980s and early 1990s and the second in 2015. Post-die-off events, samples were collected for stable isotope analysis. Using historical (1998–1999) and contemporary (2018) stable isotope data, we examine how food webs in Florida Bay have changed in response to seagrass die-off over time by measuring contributions of basal sources to energy usage and using trophic niche analysis to compare niche size and overlap. We examined three consumer species sampled in both time periods (Orthopristis chrysoptera, Lagodon rhomboides, and Eucinostomus gula) in our study. Seagrass production comprised the majority of source usage in both datasets. However, contemporary consumers had a mean increase of 18% seagrass usage and a mean decrease in epiphyte usage of 7%. The shift in trophic niche from epiphyte usage (green pathway) toward seagrass usage (brown pathway) may indicate that food web browning is occurring in Florida Bay. 
    more » « less
  2. Abstract

    Natural and anthropogenic disturbances have led to rapid declines in the amount and quality of available habitat in many ecosystems. Many studies have focused on how habitat loss has affected the composition and configuration of habitats, but there have been fewer studies that investigate how this loss affects ecosystem function. We investigated how a large‐scale seagrass die‐off altered the distribution of energetic resources of three seagrass‐associated consumers with varied resource use patterns. Using long‐term benthic habitat monitoring data and resource use data from Bayesian stable isotope mixing models, we generated energetic resource landscapes (E‐scapes) annually between 2007 and 2019.E‐scapes link the resources being used by a consumer to the habitats that produce those resources to calculate a habitat resource index as a measurement of energetic quality of the landscape. Overall, our results revealed that following the die‐off there was a reduction in trophic function across all species in areas affected by the die‐off event, but the response was species‐specific and dependent on resource use and recovery patterns. This study highlights how habitat loss can lead to changes in ecosystem function. Incorporating changes in ecosystem function into models of habitat loss could improve understanding of how species will respond to future change.

     
    more » « less
  3. Abstract

    Macrophyte foundation species provide both habitat structure and primary production, and loss of these habitats can alter species interactions and lead to changes in energy flow in food webs. Extensive seagrass meadows in Florida Bay have recently experienced a widespread loss of seagrass habitat due to a Thalassia testudinum mass mortality event in 2015 associated with prolonged hypersalinity and bottom-water anoxia. Using stable isotope analysis paired with Bayesian mixing models, we investigated the basal resource use of seven species of seagrass-associated consumers across Florida Bay in areas affected by the 2015 seagrass die-off. Three years after the die-off, basal resource use did not differ for species collected inside and outside the die-off affected areas. Instead, consumers showed seasonal patterns in basal resource use with seagrass the most important in the wet season (58%), while epiphytes were the most important in the dry season (44%). Additionally, intraspecific spatial variability in resource use was lower in the wet season compared to the dry season. We were unable to detect a legacy effect of a major disturbance on the basal resource use of the most common seagrass-associated consumers in Florida Bay.

     
    more » « less
  4. null (Ed.)
    The use of nutrients by diverse phytoplankton communities in estuarine systems, and their response to changes in physical and biogeochemical processes in these natural systems, is a significant ongoing area of research. We used a whole ecosystem 15NO3− tracer experiment to determine the uptake of different nitrogen (N) forms in phytoplankton functional groups over a mid- to neap tidal cycle in a salt marsh creek in Plum Island Estuary, Massachusetts, USA. We quantified the biomass and δ15N for three groups corresponding to micro- (20–200 μm; microP), nano- (3–20 μm; nanoP), and picophytoplankton (< 3 μm; picoP). All three size classes showed distinct use of recycled N sources throughout the 11-day sampling period and minimal direct assimilation of the 15NO3− tracer. MicroP consistently used high amounts of creek-derived 15NH4+, even with a shift at neap tide from diatom- to dinoflagellate-dominated communities (including members of the harmful genus Alexandrium). NanoP use of recycled 15NH4+ increased over the mid-neap tidal cycle, while picoP use decreased. Both biomass and NH4+ use (as highest δ15N values) of all size groups were maximized during neap tide. This study demonstrates partitioning of recycled N use among size-based phytoplankton groups in the estuary, with distinct effects of tidal cycle on the nutrient uptake of each group, and with important implications for the roles of diverse phytoplankton communities in estuarine nutrient cycling. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
    Abstract Excess reactive nitrogen (N) flows from agricultural, suburban, and urban systems to coasts, where it causes eutrophication. Coastal wetlands take up some of this N, thereby ameliorating the impacts on nearshore waters. Although the consequences of N on coastal wetlands have been extensively studied, the effect of the specific form of N is not often considered. Both oxidized N forms (nitrate, NO3−) and reduced forms (ammonium, NH4+) can relieve nutrient limitation and increase primary production. However, unlike NH4+, NO3− can also be used as an electron acceptor for microbial respiration. We present results demonstrating that, in salt marshes, microbes use NO3− to support organic matter decomposition and primary production is less stimulated than when enriched with reduced N. Understanding how different forms of N mediate the balance between primary production and decomposition is essential for managing coastal wetlands as N enrichment and sea level rise continue to assail our coasts. 
    more » « less